
Create a new scene

1. Click on File in the Unity menu
2. Click New Scene

01 - Quick Start Tutorial

01 - QUICK START TUTORIAL 1



Create a canvas

In the editor hierarchy:

1. Click the Create button
2. Click UI > Canvas

01 - Quick Start Tutorial

01 - QUICK START TUTORIAL 2



Create an empty GameObject for the scroller

Right-click on the Canvas GameObject and select Create Empty

Rename the GameObject

Call your scroller GameObject Scroller for this tutorial

01 - Quick Start Tutorial

01 - QUICK START TUTORIAL 3



Add the EnhancedScoller component to the
scroller GameObject

While the Scroller GameObject is selected, click on the Add Component button in the

inspector. Search for Enhanced Scroller and select it to add. Alternatively, you can

drag the EnhancedScroller script from the EnhancedScroller Plugins folder directly to

the inspector if you prefer. When you add the EnhancedScroller component, a Scroll

Rect is automatically added.

01 - Quick Start Tutorial

01 - QUICK START TUTORIAL 4



Add an image

While the Scroller GameObject is still selected, click on the Add Component in the

inspector and search for Image. Select it to add.

01 - Quick Start Tutorial

01 - QUICK START TUTORIAL 5



Add a mask

While the Scroller GameObject is selected click on the Add Component button in the

inspector and search for Mask. Select to add.

01 - Quick Start Tutorial

01 - QUICK START TUTORIAL 6



Resize and position the scroller GameObject

In the Scene window of the Unity editor, drag the scroller around until you like its

position and size

01 - Quick Start Tutorial

01 - QUICK START TUTORIAL 7



Create a temporary cell view container

Right-click on the Scroller GameObject in the scene hierarchy and select Create

Empty. Don't bother renaming this new GameObject as it will be deleted when the

scroller starts up. The only reason we have to create this is because Unity will give

errors if the Scroll Rect has no content GameObject. We can also use this GameObject

as a way to create and preview the cell view.

01 - Quick Start Tutorial

01 - QUICK START TUTORIAL 8



Link the cell view container to the scroller

1. Select the Scroller GameObject in the scene hierarchy
2. Drag the new GameObject to the Content field of the scroller's Scroll Rect component

in the inspector

01 - Quick Start Tutorial

01 - QUICK START TUTORIAL 9



Resize and position the temporary cell view
container

Resize the temporary GameObject you just created. This GameObject will be deleted at

runtime, so don't worry too much about positioning. You are just resizing and positioning

so that you can preview your cell views easily.

Create a scroller controller GameObject

Click on the Create button in the scene hierarchy and select Create Empty

01 - Quick Start Tutorial

01 - QUICK START TUTORIAL 10



Rename the GameObject

Rename the new GameObject to Scroller Controller for this tutorial

Create a cell view script

Create a new C# script by clicking the Create button in the project window.

01 - Quick Start Tutorial

01 - QUICK START TUTORIAL 11



Rename the cell view script

Rename the new script to AnimalCellView for this tutorial

Create a scroller controller script

Create a scroller controller script like you did for the cell view. Rename the script to

ScrollerController for this tutorial

01 - Quick Start Tutorial

01 - QUICK START TUTORIAL 12



Create a scroller data script

Create a data script and rename to ScrollerData for this tutorial

Set up the data script

Open up the ScrollerData script in your script editor and copy this code over what is

already there

public class ScrollerData

{

public string animalName;

}

Explanation:

This class will hold the data for our list. This should just be pure data without any

concern for presentation. We will deal with presentation in the cell view script.

01 - Quick Start Tutorial

01 - QUICK START TUTORIAL 13



The data class is a representation of one record of our data.

Note: you can use your own data classes from any source. The EnhancedScroller isn't

even aware of the data, only your delegate will handle this. This makes the scroller

highly flexible and reusable.

Set up the cell view script

Open up the AnimalCellView script in your script editor and copy this code over what is

already there

using UnityEngine;

using UnityEngine.UI;

using System.Collections;

using EnhancedUI.EnhancedScroller;

public class AnimalCellView : EnhancedScrollerCellView

{

public Text animalNameText;

public void SetData(ScrollerData data)

{

animalNameText.text = data.animalName;

}

}

Explanation:

01 - Quick Start Tutorial

01 - QUICK START TUTORIAL 14



The AnimalCellView script is the representation of our data in the scene. It will handle

how the data is layed out and formatted. This class must inherit from the

EnhancedScrollerCellView.

There is one UI field that links the Animal Name Text GameObject to this view script

called animalNameText.

The SetData function is optional, but it allows you to pass data to the view so that it can

be displayed. In this example, the animalNameText object's text property is updated to

the data record's animalName field.

Note: we set up some library references at the top of the class to simplify usage in the

class body.

Set up the scroller controller script

Open up the ScrollerController script in your script editor and copy this code over what

is already there

using UnityEngine;

using System.Collections;

using System.Collections.Generic;

using EnhancedUI.EnhancedScroller;

public class ScrollerController : MonoBehaviour, IEnhancedScrollerDelegate

{

private List<ScrollerData> _data;

public EnhancedScroller myScroller;

public AnimalCellView animalCellViewPrefab;

01 - Quick Start Tutorial

01 - QUICK START TUTORIAL 15



void Start ()

{

_data = new List<ScrollerData>();

_data.Add(new ScrollerData() { animalName = "Lion" });

_data.Add(new ScrollerData() { animalName = "Bear" });

_data.Add(new ScrollerData() { animalName = "Eagle" });

_data.Add(new ScrollerData() { animalName = "Dolphin" });

_data.Add(new ScrollerData() { animalName = "Ant" });

_data.Add(new ScrollerData() { animalName = "Cat" });

_data.Add(new ScrollerData() { animalName = "Sparrow" });

_data.Add(new ScrollerData() { animalName = "Dog" });

_data.Add(new ScrollerData() { animalName = "Spider" });

_data.Add(new ScrollerData() { animalName = "Elephant" });

_data.Add(new ScrollerData() { animalName = "Falcon" });

_data.Add(new ScrollerData() { animalName = "Mouse" });

myScroller.Delegate = this;

myScroller.ReloadData();

}

public int GetNumberOfCells(EnhancedScroller scroller)

{

return _data.Count;

}

public float GetCellViewSize(EnhancedScroller scroller, int dataIndex)

{

return 100f;

}

public EnhancedScrollerCellView GetCellView(EnhancedScroller scroller, int

dataIndex, int cellIndex)

{

AnimalCellView cellView = scroller.GetCellView(animalCellViewPrefab) as

AnimalCellView;

cellView.SetData(_data[dataIndex]);

return cellView;

01 - Quick Start Tutorial

01 - QUICK START TUTORIAL 16



}

}

Explanation:

This controller is the heart of our tutorial. It handles setting up the data for the scroller

and provides some callbacks that the scroller will request when it needs information.

The controller can handle any type of data, it doesn't even need a list to work. You could

have completely separated objects being used to drive the scroller.

Here is a breakdown:

using UnityEngine;

using System.Collections;

using System.Collections.Generic;

using EnhancedUI.EnhancedScroller;

Set up some references to our libraries we'll be using.

public class ScrollerController : MonoBehaviour, IEnhancedScrollerDelegate

Inheriting from the IEnhancedScrollerDelegate interface, we are telling the

ScrollerController that we need to set up some callbacks for the EnhancedScroller.

private List<ScrollerData> _data;

This will be our list of data records

public EnhancedScroller myScroller;

public AnimalCellView animalCellViewPrefab;

01 - Quick Start Tutorial

01 - QUICK START TUTORIAL 17



These lines are inspector fields that we will use to link our GameObjects to this class

void Start ()

{

_data = new List<ScrollerData>();

_data.Add(new ScrollerData() { animalName = "Lion" });

_data.Add(new ScrollerData() { animalName = "Bear" });

_data.Add(new ScrollerData() { animalName = "Eagle" });

_data.Add(new ScrollerData() { animalName = "Dolphin" });

_data.Add(new ScrollerData() { animalName = "Ant" });

_data.Add(new ScrollerData() { animalName = "Cat" });

_data.Add(new ScrollerData() { animalName = "Sparrow" });

_data.Add(new ScrollerData() { animalName = "Dog" });

_data.Add(new ScrollerData() { animalName = "Spider" });

_data.Add(new ScrollerData() { animalName = "Elephant" });

_data.Add(new ScrollerData() { animalName = "Falcon" });

_data.Add(new ScrollerData() { animalName = "Mouse" });

myScroller.Delegate = this;

myScroller.ReloadData();

}

The Start function occurs when the scene loads. Here we create our list of data and tell

the scroller that it should use the ScrollerController as its delegate. By setting this script

as the scroller's delegate, we are telling the scroller that when it needs information about

our data or views, it should ask this script. Finally, we reload the data to get it to display.

public int GetNumberOfCells(EnhancedScroller scroller)

{

return _data.Count;

}

01 - Quick Start Tutorial

01 - QUICK START TUTORIAL 18



This is one of the delegate callbacks that the scroller will call to get information.

GetNumberOfCells just tells the scroller how many list items we are expecting. In this

case, we just return the number of items in the _data list.

public float GetCellViewSize(EnhancedScroller scroller, int dataIndex)

{

return 100f;

}

GetCellViewSize is another callback that tells the scroller how large to make each cell.

This number could potentially be different for each cell, but in this example we are

returning a static 100 pixels for all cells.

public EnhancedScrollerCellView GetCellView(EnhancedScroller scroller, int

dataIndex, int cellIndex)

{

AnimalCellView cellView = scroller.GetCellView(animalCellViewPrefab) as

AnimalCellView;

cellView.SetData(_data[dataIndex]);

return cellView;

}

GetCellView returns which cell view prefab the scroller should use to display the cell at

the given dataIndex. In this example, we are only using a single type of cell, the

animalCellViewPrefab. First we ask the scroller to create the view for us. If the view has

already been created and is in the recycled list, the scroller will recycle the view instead

of creating a new one. Next, the cell view has its data set. This is optional, but in this

case it is what drives the view to update its text UI. Finally, we return the cell view to the

scroller for processing.

01 - Quick Start Tutorial

01 - QUICK START TUTORIAL 19



Create a cell view GameObject in the temporary
container

In the scene hierarchy right-click on the temporary GameObject under the Scroller.

Select UI > Panel

01 - Quick Start Tutorial

01 - QUICK START TUTORIAL 20



Rename the cell view GameObject

Rename the new GameObject AnimalCellView

01 - Quick Start Tutorial

01 - QUICK START TUTORIAL 21



Add the cell view component to the cell view
GameObject

While the AnimalCellView GameObject is selected, click the Add Component button in

the inspector and search for Animal Cell View. Select it to add the component.

01 - Quick Start Tutorial

01 - QUICK START TUTORIAL 22



Set the cell view identifier

Change the cell identifier to something useful. In this tutorial we will set it to Animal Cell

View. Since this is the only cell view used in the tutorial, we could have left it blank. The

Cell Identifier field should be unique for all the cell prefabs that the scroller will be

handling so it can choose the correct GameObject to recycle.

Set the cell view GameObject to stretch

Be sure the cell view is stretching on both axis. The scroller will stretch the cells to fit

according to the scroller dimensions and the cell size specified by the delegate.

01 - Quick Start Tutorial

01 - QUICK START TUTORIAL 23



Create a UI Text GameObject for the animal name

In the scene hierarchy, right-click the AnimalCellView GameObject and select UI > Text

01 - Quick Start Tutorial

01 - QUICK START TUTORIAL 24



Rename the text GameObject

Rename the new GameObject Animal Name Text for this tutorial

01 - Quick Start Tutorial

01 - QUICK START TUTORIAL 25



Set up the text GameObject's properties

While the text GameObject is still selected, change its properties in the inspector. You

can use the following setting or experiment with your own. For this example, we

changed the the stretching and anchor to fill the parent panel completely. Also, the

alignment was changed to center vertically and horizontally.

01 - Quick Start Tutorial

01 - QUICK START TUTORIAL 26



Link the text GameObject to the cell view

1. Select the AnimalCellView GameObject in the scene hierarchy

01 - Quick Start Tutorial

01 - QUICK START TUTORIAL 27



2. Drag the Animal Name Text GameObject to the Animal Name Text field of the
AnimalCellView component in the inspector

01 - Quick Start Tutorial

01 - QUICK START TUTORIAL 28



Create a prefab of the cell view

Click on the AnimalCellView GameObject in the scene hierarchy and drag it to the

project window to create a prefab for this cell view

01 - Quick Start Tutorial

01 - QUICK START TUTORIAL 29



Add the scroller controller script to the Scroller
Controller GameObject

Select the Scroller Controller GameObject in the scene hierarchy. In the inspectory

click the Add Component button and search for Scroller Controller. Select to add the

component.

01 - Quick Start Tutorial

01 - QUICK START TUTORIAL 30



Link the Scroller GameObject to the Scroller
Controller

1. Select the Scroller Controller GameObject in the scene hierarchy
2. Drag the Scroller GameObject to the My Scroller field of the Scroller Controller script in

the inspector

01 - Quick Start Tutorial

01 - QUICK START TUTORIAL 31



Link the cell view prefab to the scroller component

1. Select the Scroller Controller GameObject in the scene hierarchy
2. Drag the AnimalCellView prefab from the project window to the Animal Cell View

Prefab field of the Scroller Controller's inspector

01 - Quick Start Tutorial

01 - QUICK START TUTORIAL 32



Run the scene

Click the run button to see the scroller in action.

01 - Quick Start Tutorial

01 - QUICK START TUTORIAL 33



Recycling

While the scene is running you can see the active cell views in your scroller by

expanding the Container GameObject. As you scroll, this list will be updated. If a cell

gets recycled, it will show up under the Recycled Cells list. You can see the recycling

visually by turning off the Mask component of the Scroller if you prefer.

01 - Quick Start Tutorial

01 - QUICK START TUTORIAL 34


	Create a new scene
	Create a canvas
	Create an empty GameObject for the scroller
	Rename the GameObject

	Add the EnhancedScoller component to the scroller GameObject
	Add an image
	Add a mask
	Resize and position the scroller GameObject
	Create a temporary cell view container
	Link the cell view container to the scroller
	Resize and position the temporary cell view container
	Create a scroller controller GameObject
	Rename the GameObject

	Create a cell view script
	Rename the cell view script

	Create a scroller controller script
	Create a scroller data script
	Set up the data script
	Set up the cell view script
	Set up the scroller controller script
	Create a cell view GameObject in the temporary container
	Rename the cell view GameObject

	Add the cell view component to the cell view GameObject
	Set the cell view identifier
	Set the cell view GameObject to stretch
	Create a UI Text GameObject for the animal name
	Rename the text GameObject
	Set up the text GameObject's properties

	Link the text GameObject to the cell view
	Create a prefab of the cell view
	Add the scroller controller script to the Scroller Controller GameObject
	Link the Scroller GameObject to the Scroller Controller
	Link the cell view prefab to the scroller component
	Run the scene
	Recycling

