
 By Seaside Studios
 For technical support and requests write to:

 seasidegamestudios@gmail.com
 Twitter of the creator: https://twitter.com/GerardBelenguer

mailto:seasidegamestudios@gmail.com
https://twitter.com/GerardBelenguer

 Index
 Overview 2

 First Steps (Must Read) 3

 Render Pipeline And Post Processing Setup 4

 Component Features 7

 Asset Window 8

 Textures Setup 10

 Custom Sort Axis 14

 Saving Prefabs 14

 Sprite Atlases 15

 How to animate effects 16

 Scripting 17

 How to Enable/Disable Effects at Runtime 18

 Random Seed 19

 Scaled Time 19

 UI Masking 20

 2D Renderer URP Lights 22

 Unified Outline 26

 Render Material To Image 27

 Effects and Properties Breakdown 28

 Considerations 38

 Running out of Shader Keywords 39

 1

 Overview
 First of all thanks for downloading this asset! The intention of this asset is
 to provide you with an all in one solution to include cool effects to sprites,
 UI images effects to your project in the easiest and fastest way possible.

 What makes this asset unique is that you choose which effects you desire
 and the material will blend and stack all your desired effects appropriately.
 So the same material allows you to create a huge variety of effects without
 altering the setup of your sprites.

 On top of that it offers a very flexible, powerful and easy to learn workflow
 that will allow you to enhance your projects visuals in the easiest way
 possible.

 Link to the youtube playlist that explains how to use this asset:
 https://youtube.com/playlist?list=PLKS0HUbkxp-mLfgqHc4Qglb7Maq0ZMG
 So

 Feel free to contact me over at this email if you have any issue, request or
 question. I’m always trying to improve the asset, open to suggestions and
 I’ll be more than happy to help you out: seasidegamestudios@gmail.com

 Please make sure to drop a review on the Asset Store page if you like
 the asset. It helps a ton:
 https://assetstore.unity.com/packages/vfx/shaders/all-in-1-sprite-shader-15
 6513

 Finally a new asset called All In 1 Vfx Toolkit has been released. It's a
 spiritual successor to this asset but tailor made for VFX creation.
 Get it here with a HUGE DISCOUNT for owning this asset:
 https://assetstore.unity.com/packages/vfx/all-in-1-vfx-toolkit-206665

 2

https://youtube.com/playlist?list=PLKS0HUbkxp-mLfgqHc4Qglb7Maq0ZMGSo
https://youtube.com/playlist?list=PLKS0HUbkxp-mLfgqHc4Qglb7Maq0ZMGSo
mailto:seasidegamestudios@gmail.com
https://assetstore.unity.com/packages/vfx/shaders/all-in-1-sprite-shader-156513
https://assetstore.unity.com/packages/vfx/shaders/all-in-1-sprite-shader-156513
https://assetstore.unity.com/packages/vfx/all-in-1-vfx-toolkit-206665

 First Steps (Must Read)
 The asset includes a component that will do all the setup for you. The component is
 called “AllIn1Shader”:

 When you add it, the component will swap the current material for a new instance of the
 AllInOneSpriteShader material. The component also has some features that are
 overviewed in the next point.

 Here you have a link to a video that gives an overview of the asset in case you prefer a
 visual explanation:
 https://youtu.be/ThvqkJ5q-gk

 But you can also do it the classic way: right clicking the AllInOneSpriteShader and then
 going Create->Material. You can then name this material and drag it into the Sprite
 Renderer Material slot in the Inspector of the desired Sprite:

 The same process can be followed for UI Images, Particle Systems, Tilemap
 Renderers, Sprite Shapes and Mesh Renderers.

 3

https://youtu.be/ThvqkJ5q-gk

 Once the Material is added you’ll see the Material Inspector. You can enable the effects
 you want to be displayed by clicking the toggle boxes and change the properties values
 usually by using a slider. You can also change these values via scripting (see Scripting
 section).

 Render Pipeline And Post Processing Setup
 The asset will work out of the box in all render pipelines. If you just want to use the
 asset it’s ready to go right after import. The following steps are only relevant if you:

 A. Want to get the exact results seen in the Trailer Demo, screenshots, WebGL
 Demo etc…

 B. Want to learn how to add Post Processing Bloom that will be responsible to make
 bright things glow (needed for effects like Glow and other effects that have
 intensity properties to have glowing halos as if they produced light)

 C. Want to learn how to use the 2D Renderer URP realtime lighting shader

 Setup Steps for A and B - Demos and Post Processing : I’m grouping these 2 since
 they need the same steps.

 4

 For Built-In pipeline:
 1. Install Post Processing package from the Package Manager
 2. In Graphics Settings enable HDR in all checkboxes
 3. Make sure you allow HDR in you camera
 4. Add Post Process Layer and Volume
 5. Properly configure them make making it Global and setting the Layer to the same
 Layer of the Camera you are using
 You can also watch a video about it here:
 https://youtu.be/pq5dTygcFVU

 URP pipeline steps:
 1. Import the “2DRenderer-URP-Package” or “2DRenderer-URP-Package-2021.2+”
 Unity Package depending if you are in version 2021.2 or not. Choose the first one if you
 are in an older Unity version and the second one if you are in 2021.2 or a later version.
 If you want to change the package just delete the 2DRenderer_URP folder and import
 the other one.
 Once imported the URP demo scenes can be found in the 2DRenderer_URP folder.
 DemoOriginalUrp is the one you’ll want to use unless you follow the 2D Renderer setup
 steps we’ll see right after.
 2. Set Color Space to Gamma in Player Settings, Other Settings, Color Space

 Post Processing should be working straight away in the URP Demo scenes but
 here you have a setup video just in case:
 https://youtu.be/ZJBw7sGG63g (URP Post Processing)

 *Unity has been making some changes to the Volumes Post Processing, so
 depending on your Unity version things may look too bright and glowy. Feel free
 to play around with the Bloom effect parameters in the Volumes component of the
 Camera (those particular property values in red are pretty good for old versions
 of Unity):

 5

https://youtu.be/pq5dTygcFVU
https://youtu.be/ZJBw7sGG63g

 Setup Steps for C - 2D URP Renderer for 2D realtime lighting :

 1. Follow the setup steps of URP right above
 2. Set Color Space to Gamma in Player Settings, Other Settings, Color Space
 3. In Graphics Settings set the Scriptable Render Pipeline Settings to “AllIn1UrpAsset”
 4. In Quality Settings set the Rendering asset to “AllIn1UrpAsset”
 5. Now the DemoLighting demo scene will work and you can see the 2D realtime
 lighting
 You can also watch these 2 short videos here (they are a bit out of date but it may
 help):
 https://youtu.be/e7jyq-MXLEo (URP Renderer Setup)
 https://youtu.be/ZJBw7sGG63g (URP Post Processing)

 6

https://youtu.be/e7jyq-MXLEo
https://youtu.be/ZJBw7sGG63g

 Component Features
 Once added the component will look like this:

 The buttons do the following:
 ● Deactivate All Effects : Turns off all Effects (both Color and UV). Clicking this

 button does not remove previous settings, so if an effect is turned on again, the
 old settings remain.

 ● New Clean Material : It will create a new instance of the AllInOneSpriteShader
 material and assign it to the Sprite. Deactivating and resetting all effects and
 properties in the process.

 ● Create New Material With Same Properties : It will create a new instance of the
 AllInOneSpriteShader material with the same effects and properties of the
 previous one. This is useful when you want to create a material similar to another
 one.

 ● Save Material to Folder : Create a copy of the material with current effects
 enabled and specific settings set. Material can be located in the save folder for
 reapplication (save path can be changed in the Asset Window). This button must
 be clicked prior to making a Prefab of a Gameobject with effects applied.

 7

 ● Apply Material To All Children : Applies the material of the current selected
 object to all the objects under its hierarchy. All children renderers will then have
 the same effects and properties as the parent.

 ● Render Material To Image : Renders current Texture + Material to an image
 texture. You can read more about this in the Render Material To Image section.

 ● Change Shader Variant : This dropdown allows you to swap the different
 variants of the shader included in the asset. You can learn more about the Scaled
 Time, Masked UI and URP 2D Renderer variants in the Scaled Time, UI Masking
 and URP 2D Lights sections of this Documentation.

 ● Sprite Atlas Auto Setup : Use this in case your sprite is contained inside an
 atlas. This will add the SetAtlasUvs component for you and will make sure that
 the effects get properly drawn on your sprite (See Sprite Atlases section for more
 details).

 ● Remove Sprite Atlas Configuration : Removes SetAtlasUvs component and the
 rest of the sprite atlas configuration.

 ● Remove Component and Material : Removes the component from the
 GameObject and sets the Sprite Material back to the Sprite/Default one.

 Asset Window
 Video tutorial here: https://youtu.be/N0IEFVmuFvc

 You can access it by going to Window -> AllIn1ShaderWindow.
 The Asset Window offers you a bunch of settings options and utilities:

 1. Asset Display Image Options: Allows you to choose if the asset component will show
 the asset name logo or not. And in case you want the image it to show, you can choose
 the color of the image. You can choose between the default grey color of older Unity
 versions or the new black color of newer versions

 8

https://youtu.be/N0IEFVmuFvc

 Just to be clear, this is the image we are talking about:

 2. Changing the default Asset Shader: This is the shader that gets added when you add
 the asset component to a valid gameobject (a gameobject with a Renderer component
 or UI Image). Usually it should be Default or Urp 2D Renderer if you are doing a game
 with the new URP 2D Renderer Lights (this last option will only work if the URP package
 is imported, see URP 2D Lights section for more info).

 3. Material Save Path: As mentioned in the previous section the Asset can save
 Materials. By default these materials will be saved into a pre assigned “Materials” folder
 under the Asset root folder. But you can change the folder here:

 4. Render Material To Image: Here you can change the default save route and the
 Rendered Image Texture Scale. Since the output will look slightly less sharp than the
 in-engine version you can upscale the output to make it more crisp in case you need to.

 9

 5. Normal Map Creator: You can change the save route of the Normal Maps used in the
 Urp 2D Renderer shader and you can also create Normal Map textures using this
 window. You can do so by adding a Target Image, choosing a Normal Strength and
 Smoothing values and pressing the Create And Save Normal Map.

 6. Gradient Creator: Allows you to create Gradient textures that can then be used with
 the asset shader. The most straightforward use for it is the Color Ramp effect. There is
 an example in the third row of the Demo called “Custom Gradient” that uses a texture
 created with this tool.

 Textures Setup
 In order to get the effects looking as they should, it's important to know how to import
 and set up the textures we’ll be using for our sprites and UI images.

 Here you have a link to a video that explains how to setup your textures in case you
 prefer a visual explanation:
 https://youtu.be/DGzBCGHg8BE

 10

https://youtu.be/DGzBCGHg8BE

 1. The most important part is having enough room within the sprite shape to show
 the effects. In the top of the Scene window you can choose how the scene view
 is rendered. If we change from Shaded to ShadedWireframe we’ll be able to see
 the sprite rect size:

 In the Shaded Wireframe view we can see black lines, that’s the shape of the
 mesh where your sprite and effects will be rendered. To get all the effects to
 display properly we’ll need more space. Otherwise the effects will get cropped
 where the black line ends.

 The easiest way of doing so is changing the Mesh Type to Full Rect in the import
 settings of the sprite:

 11

 We should always have plenty of space around the sprite so that all the effects
 can get rendered properly like in this picture (red lines show all the available
 space where effects can get rendered):

 Moreover, if you need even more space you could use the Rect Size effect. This
 effect will make the available space for the sprite even bigger. Note that this
 effect will only properly work on single image sprites, it won’t work on
 spritesheets. And doesn’t work well for UI Images either, please use this effect as
 a last resort.

 12

 2. In a similar fashion if we are using a spritesheet you must import the sprites in
 Multiple Sprite Mode (as you always do) and then make sure that when you Slice
 your sprites they have some spacing:

 Notice how sprites have a generous spacing between them.
 Be aware that some effects won’t display correctly unless you set up your
 atlas sprites properly, see next section to know how (Sprite Atlases).

 3. You’ll see that some effects have a Glow property. In order for these properties to
 have the desired effect you need to add Post Processing and Bloom to the Main
 Camera of your scene.

 If you don’t know how this is done you can follow these videos:
 URP: https://youtu.be/ZJBw7sGG63g
 Built-in: https://youtu.be/pq5dTygcFVU

 4. Most of the time it will be a good idea to set the Wrap Mode of the Import
 Settings of the textures you use to Repeat. This will assure a proper result when
 using effects that use scrolling textures

 13

https://youtu.be/ZJBw7sGG63g
https://youtu.be/pq5dTygcFVU

 5. The same exact process applies to UI images

 Custom Sort Axis
 In 2D games we generally want to sort sprites along the Y axis. So we want to have
 objects that are below to render on top of the ones that are higher up.
 This can be achieved by playing around with the Sprite Renderer Order in Layer values,
 but we can also configure Unity to sort sprites and objects along the Y axis
 automatically if we want to:

 If you are using URP you can change this option in the Pipeline Renderer asset (if you
 set the sorting axis to the Z axis sprites will get sorted by depth, this is used in 2.5D and
 3D games):

 Saving Prefabs
 By default this asset doesn’t save the Material you are using, instead it keeps it as part
 of the Scene in order to avoid having too many objects cluttering your project. This
 means that by default, when you turn a GameObject with an AllIn1SpriteShader
 material into a prefab, the prefab won’t render correctly since it doesn't have a
 reference to the Material inside the Project Asset files.

 In order to save a Prefab you first need to save its Material. You can do so with the

 14

 “Save Material to Folder” button that you’ll find on the asset component:

 Sprite Atlases
 You can also find a video about it here:
 https://youtu.be/xzKYMUnmjnQ

 By default if you use this tool with a sprite that’s inside of a sprite atlas you’ll see that
 the visual results that you obtain when using UV Effects are not the ones that you
 expect. This is because the Sprite Renderer knows that it’s a partial image (since it’s
 inside an atlas) but the shader doesn’t, which causes unexpected results.

 The problem with sprite atlases is that each sprite inside the atlas has an arbitrary UV
 range depending on its size. The Sprite Atlas setup normalizes the texture coordinates
 from 0 to 1 even though each individual sprite within the atlas has an arbitrary range.

 This setup will make UV effects work as you expect in images that are inside Sprite
 Atlases. The Wind effect is a great example. Compare how a sprite inside an atlas looks
 with the Wind effect when using the Atlas Setup versus when not using it.

 With this asset component buttons you can add and remove the Sprite Atlas Setup:

 With the Setup button the SetAtlasUvs component will be automatically added:

 This will manage everything for us. And in case we want to remove this setup we can
 press the second button and everything will go back to normal.

 If we are using a sprite that won’t be changing we can leave everything as is after
 pressing the Setup button but if we are using an animation that swaps the sprite (a
 flipbook) we’ll need to check the Update Every Frame checkbox in the SetAtlasUvs

 15

https://youtu.be/xzKYMUnmjnQ

 component:

 UI Images work the same but have a slight exception: for this to work every sprite inside
 the same Atlas must have a different material assigned. This can be achieved in several
 ways:

 1. Adding the AllIn1SpriteShader component (this will create a fresh new material)
 2. Duplicating an existing image gameObject and then pressing the New Clean

 Material or New Material with same properties button
 3. Duplicating a saved material (Ctrl+D when selected) and assigning this new copy

 to the desired Image component

 Finally keep in mind that there are 2 effects that don’t really work with this
 feature, these are: Rect Size and Polar Coords.

 How to animate effects
 The custom material inspector properties can be animated through the Animation
 window as any other Unity component.

 If you don’t know how this is done you can follow this video:
 https://youtu.be/aNastuqGBik

 Please keep in mind that UI material properties can’t be animated using the Animator,
 the reason being that Unity won’t allow you to animate shared material properties. Unity
 UI Images materials are always shared, which means that all Images use the exact
 same material instance of a particular Image and therefore if a property is changed for
 one Image material all the other Images that share material will change too. Since Unity
 won’t allow this behavior it doesn’t support using the Animator in UI Material properties.
 And unfortunately I can’t do anything about it.

 I recommend using an amazing free asset in the store called DoTween to animate the
 UI material properties through code or if you prefer you can use the function calls
 described in the following section.

 Also consider that since UI material instances are shared you may want to create a

 16

https://youtu.be/aNastuqGBik

 copy of each material through script on an Awake method:
 void Awake()
 {

 Image uiImage = GetComponent<Image>();
 uiImage.material = new Material(uiImage.material);

 }

 Scripting
 If you prefer avoiding animations or want to change properties through code you also
 have the possibility.

 You can find the property names by hovering the mouse over any property in the
 Material Inspector:

 To do so you’ll need to use the following Unity functions:
 ● Material.SetFloat:

 https://docs.unity3d.com/ScriptReference/Material.SetFloat.html
 ● Material.SetColor:

 https://docs.unity3d.com/ScriptReference/Material.SetColor.html
 ● Material.SetTexture:

 https://docs.unity3d.com/ScriptReference/Material.SetTexture.html

 You can find all property names on
 AllIn1SpriteShader/Resources/AllIn1SpriteShader.shader. All properties are located
 from line 5 to 225 and can also be found at the Effects and Properties Breakdown
 section.

 17

https://docs.unity3d.com/ScriptReference/Material.SetFloat.html
https://docs.unity3d.com/ScriptReference/Material.SetColor.html
https://docs.unity3d.com/ScriptReference/Material.SetTexture.html

 Here an example code snippet:
 Material mat = GetComponent<Renderer>().material;
 mat.SetFloat("_Alpha", 1f);
 mat.SetColor("_Color", new Color(0.5f, 1f, 0f, 1f));
 mat.SetTexture("_MainTex", texture);

 *Note that there is an important distinction to be made between a “material” and a
 “sharedMaterial” of a Renderer. You shall use “material” if you only want to change a
 property of that instance of the material. And “sharedMaterial” if you want to change the
 property of all the instances of that material

 Finally, there is an exception with materials used by a Masked UI Image where you’ll
 need to use “materialForRendering” instead. An example would be:
 image.materialForRendering.SetFloat("_FadeAmount", t);

 Also consider that if you are trying to change a Material used in a UI component the
 material instances will be shared. This means that any change made to an image
 material will affect all other instances. To avoid this create a new copy of the material via
 script on an Awake method:
 void Awake()
 {

 Image uiImage = GetComponent<Image>();
 uiImage.material = new Material(uiImage.material);

 }

 How to Enable/Disable Effects at Runtime
 There are 2 ways of achieving this:

 1. All effects have a property value combination that makes them look deactivated
 (usually by reducing the amount or blend property to 0, but it may vary depending
 on the effect). So the most clean way of deactivating and activating effects is by
 enabling all the effects you’ll use and then dynamically changing the property
 values either by animating the properties or by modifying the values by script as
 seen in the previous section.

 2. This other way is less efficient, messier and will cause sprites to become
 invisible in the final build if you set a combination of effects that isn’t included
 in some other material in your project. So be warned, use this with caution and
 test it on the target platform . If sprites disappear at some point make sure to

 18

 have some material in your project that includes the same set of effects than the
 sprite that isn’t showing.
 If you must use this feature I recommend having all the effects you’ll need
 enabled when you are in the editor and to disable them in the Start method. This
 will prevent any error in the final build.
 This method consists on enabling and disabling the shader compilation flags at
 runtime, so Unity will compile and replace the shader at runtime. To do so you
 first need to have a reference to the material and then use the Enable/Disable
 Keyword method like so:

 Material mat = GetComponent<Renderer>().material;
 …
 mat.EnableKeyword("GRADIENT_ON");
 mat.DisableKeyword("GRADIENT_ON");
 (Keyword names of every effect can be found at the Effects and Properties Breakdown
 section)

 If you really want to use this feature and you really know what you are doing and how to
 prevent errors you can find the effect name by hovering it with the mouse in the Material
 Inspector:

 Random Seed
 Video about it: https://youtu.be/VIXgACEVQDo

 There are some effects with a random component (such as flicker, hologram, glitch...).
 By default if you have 2 instances of a material that uses these effects they will look the
 same and it may look bad in your game. To avoid repetition you can add the
 RandomSeed component to the Object that contains the Renderer (Sprite, Tilemap,
 Sprite Shape, Particle System, Mesh) or UI Image you want to affect.

 Doing this won’t break batching as long as Gpu Instancing is enabled in the Advanced
 Configuration Options of the Material Inspector and the Main Texture is set directly in

 19

https://youtu.be/VIXgACEVQDo

 the Material asset. This means that you’ll need one instance of a material that is
 supposed to batch for each different texture you want to use.

 Scaled Time
 Video about it: https://youtu.be/7_BggIufV-w

 The default shader variant of the asset uses the built in Unity “_Time” shader property to
 animate some effects. This property is provided by Unity and will work differently
 depending on the Unity version you are using.

 Unity 2018 or older : “_Time” isn’t scaled, which means that if you pause the game all
 animated effects will keep playing. If you want to pause all shader effect animations use
 the Scale Time shader variant and add the SetGlobalTimeUnity2018.cs script to an
 active object of your scene.

 Unity 2019.4 or newer : “_Time” is scaled, which means that if you pause the game all
 animated effects will pause too. If you want all shader effect animations to keep playing,

 20

https://youtu.be/7_BggIufV-w

 use the Scale Time shader variant and add the SetGlobalTimeNew.cs script to an active
 object of your scene.

 To change the shader variant use the asset component:

 UI Masking
 Video about it: https://youtu.be/X8mb93B6Xq4
 If you try to use the asset material on a masked UI element such as the ones contained
 on a Scroll view you’ll see that the object won’t get masked.

 In this image we can see how we have a UI image inside of a Scroll View and it’s not
 getting masked (it should only be visible inside the grey area). This happens because
 elements that need to be masked have a unique Stencil configuration, this configuration

 21

https://youtu.be/X8mb93B6Xq4

 is not included on the default material since it would bring problems to the regular use
 cases.

 But you can change the shader variant with the shader component and the Image will
 get masked:

 *For this to work the Stencil buffer must be enabled. In the Built-In pipeline is
 enabled by default in most platforms. In case you are building for Android you
 can go to Player Settings, Resolution and Presentation and make sure that the
 Stencil isn’t disabled.
 In URP you need to enable the stencil in the Pipeline Settings asset:

 22

 2D Renderer URP Lights
 In order to get access to these features please follow the steps mentioned in the Render
 Pipeline And Post Processing Setup section of this Documentation.

 And here you can find a video showcasing this new feature:
 https://youtu.be/uo-oD4NIVO8

 The best way of seeing what you can do with these features is to take a look at the URP
 demo scenes inside the URP folder. In particular the DemoLighting one.

 23

https://youtu.be/uo-oD4NIVO8

 If you want to assign a Urp 2D Renderer shader to any particular sprite the easiest way
 to do so is by adding the asset component asset and changing the shader variant:

 If most of the assets you use will use this variant and you don’t want to manually
 change the shader variant every time you can change the default shader variant in the
 asset window (Window -> AllIn1ShaderWindow):

 You can add a normal map that affects how the sprite is lit in the Material Inspector:

 You can create the Normal Map externally or you can use a normal map creator
 included in the tool. You can use these 2 methods:
 1. When the Urp 2D Renderer shader variant is being used you can automatically

 24

 create and add the normal map to the sprite but pressing the Create And Add Normal
 Map button:

 2. You can also use the asset Window to use this feature without needing a
 sprite+material+asset component combo (more info about this feature in the Asset
 Window section):

 25

 Keep in mind that the normal maps will only be taken into account if the Use Normal
 Map checkbox of the 2D Light is set to true:

 To end this section I’d like to mention a very annoying problem/bug that exists
 with the URP Volumes post processing Bloom and the 2D Renderer in the Scene
 view (everything works perfectly fine in the Game view and in the final build). If
 you have Bloom active you may get very annoying crazy flickering colors when
 you move the Scene camera. I haven’t found any solution and I hope that Unity
 fixes it soon. For now the best solution is to disable Post Processing in the scene
 tab:

 26

 Unified Outline
 A component was created (All1CreateUnifiedOutline) to automate the sprite duplication
 task that is usually used to create a Unified Outline. This effect is achieved by adding an
 additional sprite behind each original sprite we want to outline:

 (Example available in the Demo scene)

 With the All1CreateUnifiedOutline component we can do that automatically by adding it
 to the parent gameobject of the hierarchy we want to outline:

 To use it we need to add an Outline Material to the first slot. We can do so by saving a
 material with the desired outline (see Component Features if you don’t know how). The
 Outline Parent Transform is optional. If added, all the new outline gameobjects will be
 placed under this transform, otherwise the duplicates will be placed under the
 gameobject they’ve been duplicated from.

 27

 The next 2 properties are used to set the order in layer and sorting layer of the outline
 sprites. We’ll want to place them behind the original sprite. But it’s up to you what order
 in layer and sorting layer they use.

 To create the Unified Outline press the Create Unified Outline checkbox. This will set up
 everything for you and will then delete the component.

 Render Material To Image

 If you press the Render Material To Image the current Texture + Material of the current
 Gameobject will get rendered into a texture that you’ll then be able to save wherever
 you want:

 In the asset window you can change the default save route and the Rendered Image
 Texture Scale. Since the output will look slightly less sharp than the in-engine version
 you can upscale the output to make it more crisp in case you need to.

 This feature is useful to offload some work from the gpu. By baking the result into a
 texture it means that the gpu won’t need to compute all effects every single frame. In

 28

 any case please keep in mind that the asset is made with efficiency in mind, even in low
 end devices. This is just one more tool at your disposal. Please don’t try to optimize
 early by swapping out all Materials by a rendered image. Only use this for performance
 reasons after running into performance problems (you most likely never will, even in low
 end devices).

 Where this feature really shines is when doing complex setups where you pre-render a
 certain image for some VFX or to pre-render a texture that you can then modify with the
 asset shader. This feature allows you to stack and re-apply the asset effects recursively
 as many times as you need.

 Effects and Properties Breakdown
 The AllIn1SpriteShader has a custom Material Inspector that allows you to activate and
 deactivate effects. When an effect is activated it displays it’s properties so that they can
 be modified:

 29

 This is the custom Material Inspector. In this image we can see that the Fade effect is
 activated and all its properties.

 Also note that there is an “R” button next to each property. This button will reset the
 property to its default value set in the shader. Feel free to change these default values
 in the shader if you need to.

 Keep in mind that there’s an example of every effect on the Demo scene.

 Down below all the shader properties are explained. In between [] (ex:[GLOW_ON]) you
 can find the shader keyword name of each effect (see How to Enable/Disable Effects at
 Runtime section to see how to use it). In between () (ex: _MainTex) you can find the
 shader property names in case you want to modify them in a script (see Scripting
 section).

 ● General Properties
 ○ Main Texture (_MainTex): Main Texture, supports Tiling and Offset
 ○ Main Color (_Color): The Tint of the the Main Texture
 ○ General Alpha (_Alpha): Transparency of the end result

 ● Color Effects
 1. Glow (Needs Post Processing Bloom to work as intended) [GLOW_ON]

 a. Glow Color (_GlowColor): Color of the Glow
 b. Glow Intensity (_Glow): Indicates how intensely the glow color will glow
 c. Global Glow(_GlowGlobal): Indicates how much the sprite will glow. It will

 use the sprite color instead of the glow color
 d. Glow Texture used? (_GlowTexUsed): When checked shows the following

 property
 e. Glow Texture (_GlowTex): Acts as a mask. The glow will only be applied

 where the alpha of this texture is greater than 0
 2. Fade [FADE_ON]

 a. Fade Texture (_FadeTex): Maps how the fade will be made. The fade will
 be made from black to white

 b. Fade Amount (_FadeAmount): How much fade to apply. 0 is no fading and
 1 is completely faded

 c. Fade Burn Width (_FadeBurnWidth): Size of the burned edge. Can be set
 to 0 to have no burned edge

 d. Fade Burn Smooth Transition (_FadeBurnTransition): How sharp the
 burned edge is

 30

 e. Fade Burn Color (_FadeBurnColor): Tint of the burned edge
 f. Fade Burn Texture (_FadeBurnTex): Texture of the burned edge
 g. Fade Burn Glow (_FadeBurnGlow): How much the burned edge glows

 (needs Bloom in the scene)
 3. Outline (when the width is large it doesn’t look good) [OUTBASE_ON]

 a. Outline Base Color (_OutlineColor): Tint of outline color
 b. Outline Base Alpha (_OutlineAlpha): Transparency of the outline
 c. Outline Base Glow (_OutlineGlow): How much the outline glows (needs

 Bloom in the scene)
 d. Outline Base High Resolution (_Outline8Directions): When toggled the

 outline has double the resolution and looks smoother on corners. It’s more
 expensive computation wise

 e. Outline Base is Pixel Perfect (_OutlineIsPixel): When toggled the outline
 width increases pixel by pixel (ideal for pixel art games)

 f. Outline Width (_OutlineWidth/_OutlinePixelWidth): How thick the outline is
 g. Outline uses texture (_OutlineTex): Toggles if the outline has a texture

 overlay or not (is affected by Outline Base Color)
 h. Outline Texture Scroll Speed (_OutlineTexXSpeed / _OutlineTexYSpeed):

 Scroll speed of the outline texture in the X axis and Y axis
 i. Outline Texture is Greyscale (_OutlineTexGrey): When toggled the outline

 texture will be greyscaled
 j. Outline uses distortion (_OutlineDistortToggle): When toggled distortion

 will be applied to the outline and the outline distortion properties will be
 shown

 k. Outline Distortion Texture (_OutlineDistortTex): Noise texture that
 determines how the distortion is done

 l. Outline Distortion Amount (_OutlineDistortAmount): How much is the
 outline distorted following the distortion texture

 m. Outline Distortion Scroll Speed (_OutlineDistortTexXSpeed /
 _OutlineDistortTexYSpeed): Scroll speed of the distortion texture in the X
 axis and Y axis

 4. Alpha Outline [ALPHAOUTLINE_ON]:
 a. Color (_AlphaOutlineColor): Color of the outline
 b. Outline Glow (_AlphaOutlineGlow): Glow intensity of the outline
 c. Power (_AlphaOutlinePower): In a way this works like the outline width
 d. Min Alpha (_AlphaOutlineMinAlpha): Play around with this property to

 handle where the outline is formed
 e. Blend (_AlphaOutlineBlend): 0 means the effect will be invisible. 1 fully

 visible, everything in between is interpolated

 31

 5. Inner Outline (places outlines over the Main Texture) [INNEROUTLINE_ON]
 a. Inner Outline Color (_InnerOutlineColor): Color of the Inner Outline
 b. Inner Outline Thickness (_InnerOutlineThickness): How thick the Inner

 Outline is
 c. Inner Outline Alpha (_InnerOutlineAlpha): How transparent the Inner

 Outline is
 d. Inner Outline Glow (_InnerOutlineGlow): How much the Inner Outline

 glows (needs Bloom in the scene)
 6. Gradient [GRADIENT_ON]

 a. Radial gradient?: When it’s not checked it will use this regular linear
 gradient

 b. 2 Color Gradient?: When enabled limits the amount colors in the gradient
 to 2 (instead of 4)

 c. Gradient Blend (_GradBlend): How much of the gradient we show. 0
 means the gradient will be fully transparent and 1 means that it will be fully
 visible

 d. Gradient Colors (_GradTopLeftCol /_GradTopRightCol / _GradBotLeftCol /
 _GradBotRightCol in order of appearance): The color of each corner of the
 gradient. Colors will be automatically blended together

 e. Boost parameters (_GradBoostX and _GradBoostY): Biases the gradient
 in the X and Y axis respectively

 f. Radial Gradient [RADIALGRADIENT_ON]:
 g. Radial gradient?: When checked it will use this radial gradient
 h. Top Color (_GradTopLeftCol): The color in the outer part of the radius
 i. Bot Color (_GradBotLeftCol): The color in the inner part of the radius
 j. Boost X (_GradBoostX): Biases the gradient towards the Top or Bot color

 depending on its value
 7. Color Swap (needs a color swap texture to work) [COLORSWAP_ON]

 a. Color Swap Texture (_ColorSwapTex): This texture must contain pure red,
 blue and green sections. This sections will then be recolored with
 whatever color we choose in the following properties

 b. Color Swap Red Channel (_ColorSwapRed): New color of the red parts of
 the Color Swap texture

 c. Color Swap Red Luminosity (_ColorSwapRedLuminosity): How bright the
 Red Channel Color will be

 d. The green and blue properties work like the red channel properties
 e. Color Swap Blend (_ColorSwapBlend): Allows to fade out the effect. 1 is

 fully visible, 0 is invisible

 32

 8. Hue Shift [HSV_ON]
 a. Hue Shift (_HsvShift): How much the colors will be shifted
 b. Hue Shift Saturation (_HsvSaturation): Saturation of the hue shift result
 c. Hue Shift Bright (_HsvBright): Brightness of the hue shift result

 9. Change 1 Color [CHANGECOLOR_ON]
 a. Tolerance (_ColorChangeTolerance): How similar to the Color to Change

 we need to be in order to change to the new color
 b. Color to Change (_ColorChangeTarget): This is the color that the shader

 will look for. The shader will change the pixels that are similar to this color
 by the New Color

 c. New Color (_ColorChangeNewCol): The result color of the pixels that are
 similar to Color to change

 d. Use Color 2 and 3: Enables more color swap slots that work just like the
 default one

 10. Color Ramp [COLORRAMP_ON]
 a. Color Ramp Texture (_ColorRampTex): This texture will be the new color

 palette of the sprite
 b. Color Ramp Luminosity (_ColorRampLuminosity): Extra of luminosity used

 to shift the color palette to where you want
 c. Color Ramp Affects Outline (_ColorRampOutline): When checked the

 color ramp will also affect the outline
 d. Color Ramp Blend (_ColorRampBlend): Allows to fade out the effect. 1 is

 fully visible, 0 is invisible
 11. Hit Effect [HITEFFECT_ON]

 a. Hit Effect Color (_HitEffectColor): The tint of the effect
 b. Hit Effect Glow (_HitEffectGlow): Glow of the effect. Needs Bloom in the

 scene
 c. Hit Effect Blend (_HitEffectBlend): How much of the effect is shown. When

 set to 0 it’s not shown, when set to 1 it shows fully. This is meant to be
 animated to get cool looking results

 12. Negative [NEGATIVE_ON]
 a. Negative Amount (_NegativeAmount): How much of the negative effect we

 want to show
 13. Pixelate [PIXELATE_ON]

 a. Pixelate size (_PixelateSize): The lower the number the more pixelated
 the sprite gets. This effect looks bad when combined with distortions

 14. Greyscale [GREYSCALE_ON]
 a. Greyscale Luminosity (_GreyscaleLuminosity): Make sprite whiter

 33

 b. Greyscale Affects Outline (_GreyscaleOutline): When checked the
 greyscale will also affect the outline

 c. Greyscale Tint Color (_GreyscaleTintColor): Tint of the greyscale
 d. Greyscale Blend (_Greyscale Blend): Allows to fade out the effect. 1 is

 fully visible, 0 is invisible
 15. Posterize [POSTERIZE_ON]

 a. Posterize Number of Colors (_PosterizeNumColors): The higher the
 number the more different colors the sprite will display

 b. Posterize Amount (_PosterizeGamma): The higher the number the more
 different the posterize colors will be

 c. Posterize Affects Outline (_PosterizeOutline): When checked the posterize
 will also affect the outline

 16. Blur (won’t affect the outline) [BLUR_ON]
 a. Blur Intensity (_BlurIntensity): How much the sprite is blurred
 b. Blur is low res (_BlurHD): When active an alternative and less expensive

 (computation wise) blur version is used
 17. Motion Blur [MOTIONBLUR_ON]

 a. Motion Blur Angle (_MotionBlurAngle): The direction of the motion blur
 b. Motion Blur Distance (_MotionBlurDist): The amount of motion blur

 18. Ghost [GHOST_ON]
 a. Ghost Color Boost (_GhostColorBoost): How white the ghost effect gets
 b. Ghost Transparency (_GhostTransparency): How transparent the effect

 gets
 c. GhostBlend (_Ghost Blend): Allows to fade out the effect. 1 is fully visible,

 0 is invisible
 19. Hologram [HOLOGRAM_ON]

 a. Hologram Stripes Amount (_HologramStripesAmount): How much uv
 space does the hologram stripes take

 b. Hologram Unchanged Amount (_HologramUnmodAmount): How much uv
 space does the unchanged parts take. These parts will be placed in
 between the stripes

 c. Hologram Stripes Speed (_HologramStripesSpeed): How fast the stripes
 scroll

 d. Hologram Min Alpha (_HologramMinAlpha): The minimum alpha of the
 stripes parts. The stripe parts will fade the alpha from this number to max
 alpha. This can be used to set any alpha gradient

 e. Hologram Max Alpha (_HologramMaxAlpha): The maximum alpha of the
 stripes parts. The end value of the alpha gradient. If it’s value it’s bigger
 than 1 it will make the stripe part glow

 34

 f. Hologram Stripe Color (_HologramStripeColor): Tint of the hologram stripe
 g. Hologram Blend (_Hologram Blend): Allows to fade out the effect. 1 is fully

 visible, 0 is invisible
 20. Chromatic Aberration [CHROMABERR_ON]

 a. ChromaticAberr Amount (_ChromAberrAmount): How visible the effect is
 b. ChromaticAberr Alpha (_ChromAberrAlpha): How transparent the effect is

 21. Glitch [GLITCH_ON]
 a. Glitch Amount (_GlitchAmount): The higher the number, the more intense

 the effect gets
 b. Glitch Size (_GlitchSize): The higher the number, the smaller the glitch

 squares get
 22. Flicker [FLICKER_ON]

 a. Flicker Percent (_FlickerPercent): The percentage of time the sprite is
 invisible (from 0 to 1)

 b. Flicker Frequency (_FlickerFreq): How often does the flicker happen
 c. Flicker Alpha (_FlickerAlpha): How transparent the sprite is when it flickers

 23. Shadow [SHADOW_ON]
 a. Shadow X Axis (_ShadowX): Shadow position offset on the X axis
 b. Shadow Y Axis (_ShadowY): Shadow position offset on the Y axis
 c. Shadow Alpha (_ShadowAlpha): Transparency of the shadow
 d. Shadow Color (_ShadowColor): Tint of the shadow

 24. Shine [SHINE_ON]
 a. Shine Mask (_ShineMask): None transparent parts of this mask texture

 will allow the shine to show
 b. Shine Color (_ShineColor): Color tint of the shine effect
 c. Shine Location (_ShineLocation): Decides the position of the shine line.

 0.5 is the center. 0 is one end and 1 is the other end. Animate this value to
 get a nice scrolling shine effect

 d. Shine Rotate: Rotation of the shine line in radians
 e. Shine Width (_ShineWidth): How wide the shine line is
 f. Shine Glow (_ShineGlow): How much does the shine line glow (benefits

 from post processing Bloom)
 25. Contrast & Brightness [CONTRAST_ON]

 a. Contrast (_Contrast): Contrast Amount (1 is default contrast)
 b. Brightness (_Brightness): Extra brightness

 26. Overlay [_OVERLAY_ON]
 a. The “Is overlay multiplicative?” [OVERLAYMULT_ON] toggle allows you to

 swap between multiplicative and additive mode. Additive just brightens the

 35

 image by adding color, while multiplicative will darken it and fade it
 depending on the overlay texture alpha

 b. Overlay Texture (_OverlayTex): The texture that we will overlay
 c. Overlay Color (_OverlayColor): The tint of the overlay texture
 d. Overlay Glow (_OverlayGlow): The glow of the overlay texture
 e. Overlay Blend (_OverlayBlend): Allows to fade out the effect. 1 is fully

 visible, 0 is invisible
 27. Alpha Cutoff [ALPHACUTOFF_ON]

 a. Alpha cutoff value (_AlphaCutoffValue): Pixels that are more transparent
 than this value are not drawn. This is useful to make more cartoon looking
 effects and to discard unwanted transparencies from certain effects
 (avoids alpha overdraw)

 28. Alpha Round [ALPHAROUND_ON]
 a. Round Threshold (_AlphaRoundThreshold): Rounds the alpha value

 depending on this threshold. The values above this value turn into 1 and
 the ones below into 0

 ● UV Effects
 29. Hand Drawn [DOODLE_ON]

 a. Hand Drawn Amount (_HandDrawnAmount): How much of a distortion we
 apply to make it look hand drawn frame a frame

 b. Hand Drawn Speed (_HandDrawnSpeed): How often we distort the sprite
 30. Grass Movement / Wind [WIND_ON]

 a. Grass Speed (_GrassSpeed): How fast it moves from side to side
 b. Bend Amount (_GrassWind): How much the sprite bends
 c. Radial Bend (_GrassRadialBend): How much the sprite twists. The top

 part of the sprite will twist with the wind the higher this number is
 d. Grass is manually animated (_GrassManualToggle): When checked the

 sprite won’t move on its own (useful if you want a sprite to interact with the
 player)

 e. Grass manual anim (_GrassManualAnim): If the previous property is
 checked this property dictates how the sprite bends. -1 means fully bent to
 the left and 1 fully bent to the right

 31. Wave [WAVEUV_ON]
 a. Wave Amount (_WaveAmount): How many waves we make
 b. Wave speed (_WaveSpeed): How fast the wave scrolls across the sprite
 c. Wave Strength (_WaveStrength): How much the wave affects the sprite
 d. Wave X Axis (_WaveX): Position of the wave origin on the X axis (0 is left

 1 is right)

 36

 e. Wave Y Axis (_WaveY): Position of the wave origin on the Y axis (0 is
 bottom 1 is top)

 32. Round Wave [ROUNDWAVEUV_ON]
 a. Round Wave Strength (_RoundWaveStrength): How much the wave

 affects the sprite
 b. Round Wave Speed (_RoundWaveSpeed): How fast the wave scrolls

 across the sprite
 33. Rect Size [RECTSIZE_ON]

 a. Rect Size (_RectSize): Size of the mesh where the sprite is drawn. Set
 Scene to “Shaded Wireframe” shading mode to see the mesh shape

 34. Offset [OFFSETUV_ON]
 a. Offset X axis (_OffsetUvX): Offset of the sprite on the X axis
 b. Offset Y axis (_OffsetUvY): Offset of the sprite on the Y axis

 35. Clipping (useful for sliders) [CLIPPING_ON]
 a. Clipping Left (_ClipUvLeft): How much of the image we clip from left to

 right
 b. Clipping Right (_ClipUvRight): How much of the image we clip from right

 to left
 c. Clipping Up (_ClipUvUp): How much of the image we clip from up to down
 d. Clipping Down (_ClipUvDown): How much of the image we clip from down

 to up
 36. Texture Scroll [TEXTURESCROLL_ON]

 a. Texture Scroll Speed X (_TextureScrollXSpeed): Scrolling speed on the X
 axis

 b. Texture Scroll Speed Y (_TextureScrollYSpeed): Scrolling speed on the Y
 axis

 37. Zoom [ZOOMUV_ON]
 a. Zoom Amount (_ZoomUvAmount): How much the sprite is zoomed

 38. Distortion [DISTORT_ON]
 a. Distortion Texture (_DistortTex):Noise texture that determines how the

 distortion is done
 b. Distortion Amount (_DistortAmount): How much the image is distorted

 following the texture pattern
 c. Distortion scroll speed (_DistortTexXSpeed and _DistortTexYSpeed):

 Scroll speed of the distortion texture in the X axis and Y axis
 39. Twist [TWISTUV_ON]

 a. Twist Amount (_TwistUvAmount): How much is the sprite twisted
 b. Twist Pos X Axis (_TwistUvPosX): Position of the center of the twist on the

 X axis (0 is left and 1 is right)

 37

 c. Twist Pos Y Axis (_TwistUvPosY): Position of the center of the twist on the
 Y axis (0 is bottom and 1 is top)

 d. Twist Radius (_TwistUvRadius): The radius of the twist effect
 40. Rotate [ROTATEUV_ON]

 a. Rotate Angle (_RotateUvAmount): Indicates in radians the angle of
 rotation of the sprite texture

 41. Polar Coordinates [POLARUV_ON]
 a. Transforms the uv coordinates into polar coordinates (this effect looks

 goods with tiling on the main texture + texture scrolling)
 42. Fish Eye [FISHEYE_ON]

 a. Fish Eye Amount (_FishEyeUvAmount): How much fish eye distortion we
 want to apply

 43. Pinch [PINCH_ON]
 a. Pinch Amount (_PinchUvAmount): How much pinch effect we want to

 apply
 44. Shake [SHAKEUV_ON]

 a. Shake Speed (_ShakeUvSpeed): How fast it shakes
 b. Shake X Multiplier (_ShakeUvX): The higher the value the more it will

 move on the X axis while shaking
 c. Shake Y Multiplier (_ShakeUvY): The higher the value the more it will

 move on the Y axis while shaking

 ● Lighting Properties (Urp 2D Renderer shader)
 a. Lighting Mask: A greyscale texture that indicates where the sprite should

 be affected by light. White means affected by light and black means unlit
 b. Lit Amount: How lit the sprite is. 1 is fully lit and 0 is not affected by light
 c. Normal Map: Normal map texture, affects how the sprite is lit
 d. Normal Strength: The higher this value gets the more pronounced the

 normal map effect gets (very high values tend to look bad)

 Considerations
 The shader that the material uses compilations flags to enable and disable the code of
 the different effects. So only the effects that you enable will be taken into account by the

 38

 GPU and therefore only those parts will be computed.
 The shader code is also fast, uses as less memory as possible and has no conditionals.
 That being said, having all these properties in the shader has a slight GPU overhead.
 But there’s nothing to worry about unless your game displays a huge amount of different
 materials at the same time since Unity will batch instances of the same material and
 sprite into a single draw call.

 Running out of Shader Keywords
 If you are using other assets or if you’ve written some complex shaders yourself you
 may run out of shader Keywords. Unity hass 256 possible global Keywords for shaders,
 Unity itself takes around 60 of them, so the user has around 190 available Keywords.
 This asset uses many Keywords, so running out of them may be a possibility if you are
 using other assets.

 So what’s the solution? Since Unity 2019.1 Unity has included local Keywords. This
 asset is prepared to work with any Unity version and that's why these local Keywords
 aren’t used. But if you are on Unity 2019.1 onward this is what you can do:

 1. Go to: AllIn1SpriteShader/Resources
 2. There you'll see the Default version, the UI Mask version and the Unscaled Time

 version
 3. Open all of them or just the Default one if you don't use the others
 4. Change all shader_feature for shader_feature_local (in visual studio ctrl+f will

 open the search and replace bar)

 *Unity will only accept 64 local keywords (shader_feature_local), with new
 updates and features the shader has slightly surpassed this number. You will
 need to leave out a few keywords as global keywords (shader_feature). Keep in
 mind that you will only run out of keywords if you have other assets with big
 shaders in your project and that in any case you can just replace the keywords on
 those assets to be local too.

 39

